- 214
- 3
- Thread starter
- #41
In order to understand even more regarding the Parallel Universes sub-theory, we go onto the kinds of Parallel Universes:
Alternative realities made possible by time travel: Science fiction writers relish the intricate plots woven by introducing time travellers into a story. Einstein's general theory of relativity does not distinguish between space and time and hence hypothetically permits travels to the past, though the mechanics of such a journey are still largely beyond us. In recent decades, backward time travel ideas have been explored in serious articles published in reputable physics journals. If journeying back in time is possible, what would happen if someone changed history? Would they launch a new timeline, and hence a new universe, in which the chain of events was different? The answer won't be known until backward time travel is either developed or ruled out.
Sum over histories : Physicist Richard Feynman had a practical, no-nonsense approach to physics, supporting notions that are potentially testable. Yet his approach to quantum field theory introduced the startling concept of reality as a weighted sum of alternative histories. For example, according to Feynman's formulation, if two electrons approach each other, deflect and scatter, their overall behavior from start to finish must take into account every possible intermediate path—weighted according to each path's likelihood. It is like assessing how tired someone will be after taking a walk in the woods by assuming that they somehow split up and took every possible route from entrance to exit—assigning more weight to the shortest (and therefore likeliest) paths, but still taking all of them into account.
Copycat regions of the universe : We now turn from the exceedingly small to the incomprehensibly large. If the universe is infinite, as many cosmologists surmise, then if you travel far enough you will eventually reach regions nearly identical to ours. That's because if you take a finite number of elements and mix them into an infinite number of combinations, eventually chance will reproduce one of the previous arrangements. It is like playing tic-tac-toe—play enough times and you are bound to repeat yourself. Hence somewhere, by pure chance, there could be a near-parallel Earth where a nearly-identical version of you is reading this article on a parchment scroll illuminated by a glowworm.
Bubble Universes and Baby Universes : In general relativity, an energy field of the right variety can trigger space to grow explosively. Researchers use this phenomenon to explain how the universe expanded so rapidly during the inflationary era. However, they've come to realize that if explosive expansion took place in one part of space, it probably happened elsewhere, too. Hence, myriad bubble universes could have emerged from the primordial cosmic sea of energy. We would never have access to other bubble universes, though, because they would have since moved away from us well beyond the limits of observation. Baby universes represent a related idea, in which universes would be seeded in the extreme conditions of black holes. The embryonic regions of space would then grow into successor universes in their own right.
Many Worlds Interpretation of quantum mechanics/Higher Dimensions : For this type of parallel universe, we move beyond the three dimensions of space itself and consider the possibility of a higher, unseen dimension. While such a scenario sounds a bit like "The Twilight Zone," higher dimensions are a vital part of string theory and other attempts at unifying the natural forces. If a higher dimension exists beyond space and time, why can't we travel through it? Theorists hypothesize that the particles of matter and light cling to our three-dimensional space, preventing us from entering or even observing the extra dimension.
The 1 associated with the Many Worlds Theory is the last 1, which explains my own point to an even more clear view.
Alternative realities made possible by time travel: Science fiction writers relish the intricate plots woven by introducing time travellers into a story. Einstein's general theory of relativity does not distinguish between space and time and hence hypothetically permits travels to the past, though the mechanics of such a journey are still largely beyond us. In recent decades, backward time travel ideas have been explored in serious articles published in reputable physics journals. If journeying back in time is possible, what would happen if someone changed history? Would they launch a new timeline, and hence a new universe, in which the chain of events was different? The answer won't be known until backward time travel is either developed or ruled out.
Sum over histories : Physicist Richard Feynman had a practical, no-nonsense approach to physics, supporting notions that are potentially testable. Yet his approach to quantum field theory introduced the startling concept of reality as a weighted sum of alternative histories. For example, according to Feynman's formulation, if two electrons approach each other, deflect and scatter, their overall behavior from start to finish must take into account every possible intermediate path—weighted according to each path's likelihood. It is like assessing how tired someone will be after taking a walk in the woods by assuming that they somehow split up and took every possible route from entrance to exit—assigning more weight to the shortest (and therefore likeliest) paths, but still taking all of them into account.
Copycat regions of the universe : We now turn from the exceedingly small to the incomprehensibly large. If the universe is infinite, as many cosmologists surmise, then if you travel far enough you will eventually reach regions nearly identical to ours. That's because if you take a finite number of elements and mix them into an infinite number of combinations, eventually chance will reproduce one of the previous arrangements. It is like playing tic-tac-toe—play enough times and you are bound to repeat yourself. Hence somewhere, by pure chance, there could be a near-parallel Earth where a nearly-identical version of you is reading this article on a parchment scroll illuminated by a glowworm.
Bubble Universes and Baby Universes : In general relativity, an energy field of the right variety can trigger space to grow explosively. Researchers use this phenomenon to explain how the universe expanded so rapidly during the inflationary era. However, they've come to realize that if explosive expansion took place in one part of space, it probably happened elsewhere, too. Hence, myriad bubble universes could have emerged from the primordial cosmic sea of energy. We would never have access to other bubble universes, though, because they would have since moved away from us well beyond the limits of observation. Baby universes represent a related idea, in which universes would be seeded in the extreme conditions of black holes. The embryonic regions of space would then grow into successor universes in their own right.
Many Worlds Interpretation of quantum mechanics/Higher Dimensions : For this type of parallel universe, we move beyond the three dimensions of space itself and consider the possibility of a higher, unseen dimension. While such a scenario sounds a bit like "The Twilight Zone," higher dimensions are a vital part of string theory and other attempts at unifying the natural forces. If a higher dimension exists beyond space and time, why can't we travel through it? Theorists hypothesize that the particles of matter and light cling to our three-dimensional space, preventing us from entering or even observing the extra dimension.
The 1 associated with the Many Worlds Theory is the last 1, which explains my own point to an even more clear view.